04.11.21, 13:20 OneNote

Binomialverteilung

Mittwoch, 15. September 2021 12:32

1. Die Binomalverteilung

Bernoulli-Ketten

Octinition: Ein bernouli-experiment hat genou zwei Ergebnisse. Eine bernoulli-kette besteht aus mehreren unabhängigen bernoulli-experimenten. Die Anzohlder Ourch führungen nennt man die Lamen und die Wahrschenlichteit eines Treffers p

Binomialkoeffizienten

Wennaus 10 Ojekten, enau 2 auggetählten Werden sollen kann die Anzahl der-Woolichkeiler mil dem sogenannten Binomial-koeffizienten Derechnet werden

Octinition: $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ heißt Ginomialkoeffizient (för $n, k \in \mathbb{N}$) mit $k \leq n$):

- Es aible (E) Möglichkeiten aus n. Objekten k auszulählen (ohne beröckeithhäung der Reinerfelige)

Beim Gaundiagramm zu einer Bernoulli-Kette der Länge n gubt es (E) Placke mit genow k trettern

Seispiel:

a) Berechnen sie (2) durch die Angabe der 4-Tupel mit zwei 1 en

b) Berechnensie (3) mithile einer der Formeln ohne WTR

c) Berechnen sie (23) mit dem LTR

Lösung:

a) Folgende 4-Tupel mit 2 Men. $(\Lambda_{i}\Lambda_{i}O_{i}O)_{i}(\Lambda_{i}O_{i}\Lambda_{i}O)_{i}(\Lambda_{i}O_{i}O_{i}\Lambda)_{i}(O_{i}\Lambda_{i}O_{i})_{i}(O_{i}\Lambda_{i}O_{i}O)_{i}(O_{i}\Lambda_{i}O_{i}O_{i}\Lambda)_{i}(O_{i}\Lambda_{i}O_{i}O_{i}\Lambda)_{i}(O_{i}\Lambda_{i}O_{i}O_{i$ ८)(器)=77520

WTR:

1. Zahl 2xnCrTocke 2. Zahl

Die Formel von Gernoulli

Satz: Georben ict eine Gernauli-Kette der Lände n und der Trefferischrischeinlichkeit p. Wenn die Zufallsaröße X die Anzohl der Treffer zählt, dann ist die Uahrscheinlichkeit Eir genau k Greffer

$$P(X=k) = \binom{n}{k} \cdot \rho^{k} \cdot (1-\rho)^{n-k}$$

Beispiel

k=M n=25 $\rho(X=M) = \binom{25}{M} \cdot O_1 \cdot O_2 \cdot O_3 \cdot O_4 \cdot O_4 \cdot O_4 \cdot O_4 \cdot O_4 \cdot O_5 \cdot O_4 \cdot O_5 \cdot O_4 \cdot O_5 \cdot O_4 \cdot O_5 \cdot O_$

A: Die Unhrscheinlichkeit dass mon genau M mal 2b. eine Münze ist MST

Ginomialverteilung

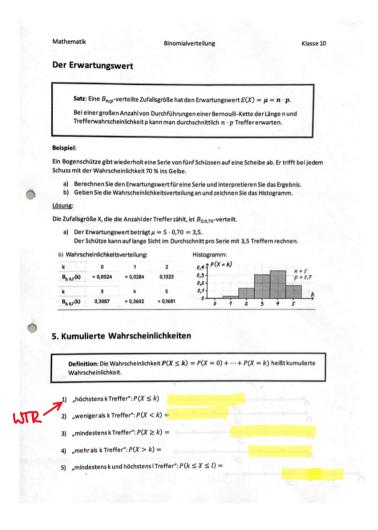
Definition: Die Dahrscheinlichkeit P(X=k) für die Trefferanzahl k einer Sernoulli-Kette der Lönge n nennt man (k) (für k= 0,1,..., n) Dabei st. p die Trefferanzahlkdie Dahrscheinlichkeit (k) teder Trefferanzahlkdie Dahrscheinlichkeit (k) nennt man Gingmialverteilung mit den Parametern n und p. Mon sont Die Zutollegroße X ist

Ervartungsvert bei binomialverteilung

04.11.21, 13:20 OneNote

 $E(x) = \tilde{n} \cdot \rho$

Wahrscheinlichkeilen mit dem WTR


0=00 0=0

P(x=2): 2nd data

Enher

→n,p v.x eingeben

Erwortungswert

a) mindestens 5x 2ahl fällt?

b) weniger als 7-x 2ahl fällt

 $0) P(x \ge 5) = 1 - 0.166 = 0.834$

Que Wahrscheinlichkeit, dass mindestens Sx Zohl fällt, beträgt 83,4%

Problemlösen mit der Ginomialverteilung

Beispiel

Wie oft muss man mit einem idealen . Tetraeder mindest Dürfeln, um mit einer Lahrscheinlichkeit von mindestens mindestens dreimal eine 4 au uurteln

Oie Zufallsgrößex zählt die Vierer und ist binomialverteilt mit k=3 und p=0,25

ges: n_1 sorbes $P(x \ge 3) \ge 0.95$ 1-P(x = 2) =0,95 |+P(x = 2) 1 ≥0,95+P(x≤2) |-0,95 Q05 = P(x < 2)

Variante	gesucht	Beispiel
1	P(X ≤ k)	Ein idealer Würfel wird achtmal geworfen. Wie groß ist die Wahrscheinlichkeit, höchstens drei Sechsen zu würfeln?
		Gegeben: $n = 8$, $p = \frac{1}{6}$, $k = 3$. Gesucht: $P(X \le 3)$.
11	n	Man möchte mit einer Wahrscheinlichkeit von mindestens 90 % min destens eine Sechs würfeln. Wie oft muss man mindestens würfeln?
		Gegeben: $p = \frac{1}{6}$, $k = 1$, $P(X ≥ 1) ≥ 0,9$. Gesucht: n .
III	р	Bei einem gezinkten Würfel sollen bei zehnmaligem Werfen mit ei- ner Wahrscheinlichkeit von 80% mindestens zwei Sechsen geworfer werden. Wie groß muss die Wahrscheinlichkeit für eine Sechs bei diesem Würfel mindestens sein?
		Gegeben: n = 10, k = 2, $P(X \ge 2) = 0.8$. Gesucht: p.
IV	k	Man wirft einen idealen Würfel 50-mal. Wenn man mehr als k Sech- sen würfelt, erhält man einen Gewinn. Wie groß muss k mindestens sein, damit man mit einer Wahrscheinlichkeit von höchstens 5% einen Gewinn erhält?
		Gegeben: $n = 50$, $p = \frac{1}{6'}$, $P(X \le k) \le 0.05$. Gesucht: k.