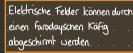
Influenz

- Freie Elektronen beweg sich entgegen Richtung der Ladiung da minus, minus sich abstoßen
- Nur bei leitendem Material möglich, da Elektronen sich frei bewegen können

Polarisation

- Ladungen richten sich aus 4> Plus-Minus; Minus-Plus
- Material muss Isolator (nicht Leiter)


Messung der elek. Kraft

-Eine Ladungsmenge Q übt aufeine Probeladung g eine elektrische Kraft aus Die Kraft auf eine Ladung kann 2.6 mit einem Kraftsensor oder einer Waage gemessen werden

Uenn Pendel gegeben:

Elektrisches Feld

- Bereich um eine (felderzeugende) Lodung Q, um dem eine Probelodung g eine elektrische Kroft erfährt
- Benötigen kein Medium um zu existieren
- Elek. Feldstärke ist ein Maß für die Stärke eines elek. Feldes an einem bestimmten Ort
- Lassen sich durch Feldlinien veranschaulichen

Elektrische Feldstärke

- Elektrische Ladungen üben aufeinander Kröfte aus. Die Energie dafür kommt aus dem elek. Feld 🗸 🔵 🗪 → ◆ (+)

Aquipotentiallinien

- Alle Punkte aleichen Potentials lassen sich mit Äquipotentiallinien verbinden 40 Alle Punkte auf einer Aquipotentiallinie haben das gleiche Potential 4 Auf einer Äquipotentiallinie benötigt man keine Energie um Codungen auf Ihnen zu verschieben

Energie, Teldstärke und Spannung

entgegen der elek. Feldstärke so muss ihr Energie hinzugeführt Werden Die elek Spannung Uzwischen den Platten ist der Quotient

-Ourchlaufteine Probelodung q eine Strecked und Spannung U

-Umgekehrt vird elek Energie in Bevegungsenergie umgevandelt

Flächenladungsdichte

Wie viele Codungen auf einer Fläche Asitzen Gei gleichmäßiger Verteilung ergibt sich __ 20. Ortstaktor En: Vakuum (Luft) Er: Materie entstent

Elek. Stromstärke

-Transport von elek. Codungen durch einen Stoff oder im Vakuum nennt man elektrischen Strom

USP: Ourch einen Leiterquerschnift fließen 0,3000 $1 = \frac{60}{0.00} = \frac{30.000}{0.000} = 0.015.000$ A = 150A

Um Stromstärke zu messen kannein Strommessgerät verwendet werden

4>In Reihe Schalten

45 Physikalische Stromrichtung: - nach + Technische Stromr.

Plattenkondensator

Je weiter man die Platten auseinander zieht, desto hoher wird die Spannung (Potentialdifferenz steigt) - linearer Anstiea

Homogenes Feld

Ein Feld, das in einem Raumbereich die gleiche Richtung und Stärke hat Spannuna

- Körper bewegen sich alleine von hohen zu niedrigen

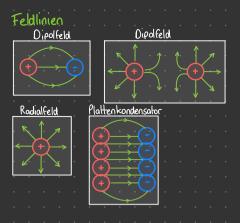
Porten Höhenunterschied

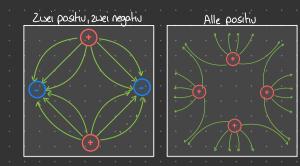
elek Feldkonstante

- Die Spannung U zuischen zwei Punkten P, und Pz ist die Potentialdifferenz

9: Ortsfaktor = 981 20 m:Kugelmasse, 1: Penolellänge 1= sq t: Zeit Q: Ladungen

U=09=4-4 U= Eel $E = \frac{F_{el}}{q}$ $E = \frac{Q}{d}$ U: Spannung


- Kapazität eines Kondensors Aufeinem gelodenen Kondensalor befinden sich getrennte Ladungen
- Die gespeicherte Ladung hängt von der Spannung und gräße der Platten ab Wobel die Ladung zur Spannung
 - proportional Q~U oder
 - Kapazität beschreibt also wie viel Lodungen pro Volt Spannung auf eine Platte des Kondensators passen


Analogien

aufwenden (nur Körperenemie)

Spannung: Man nimmt einen Gegenstand hebt ihn hoch und zieht damit eine imaginäre Feder auf. Sobald man los lässt zieht sich die Feder zusammen, der Gegenstand will auf den Boden. Kapazität: Doppelt so großer Wassereimer, doppelt so große Kapazität Stromstärke: Die viele Personen in einem Zeitraum durch die Tür laufen

Aquipotentiallinie: Denn man auf der Linie läuft, gleich wie wenn man auf einem Berg auf der gleichen Höhe läuft, man muss keine Energie

